Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |
Tags
- blue-green
- eks
- Database
- hammerDB
- Debezium
- propogation
- Grafana
- Kubernetes
- docket
- MSSQL
- traceId
- spring boot
- virtualservice
- Helm
- Salting
- 스프링부트
- slow query
- 0 replica
- 동등성
- Kafka
- SW 마에스트로
- Leaderboard
- istio
- Benchmarks
- Strimzi
- yml
- minreplica
- zset
- logback
- keda
Archives
- Today
- Total
김태오
Learning Rate 본문
Learning Rate : a hyperparameter that controls how much the model adjusts its parameters in response to the error gradient during training.
If the learning rate is too low, it takes too much time in optimization, while when it is too high, it has difficulty in converging itself.
'ML' 카테고리의 다른 글
Classification vs. Regression (0) | 2023.04.23 |
---|---|
Extending Linear Regression for Binary Classification (0) | 2023.04.23 |
Feature Scaling (0) | 2023.04.23 |
Polynomial Regression (0) | 2023.04.23 |
Gradient Descent vs. Normal Equation (0) | 2023.04.23 |