Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- minreplica
- yml
- slow query
- Salting
- docket
- Kubernetes
- spring boot
- 스프링부트
- traceId
- Helm
- Database
- SW 마에스트로
- zset
- Grafana
- MSSQL
- 동등성
- Leaderboard
- Debezium
- Software maestro
- Benchmarks
- SW Maestro
- keda
- Strimzi
- 0 replica
- blue-green
- eks
- logback
- Kafka
- hammerDB
- propogation
Archives
- Today
- Total
김태오
Feature Scaling 본문
Feature Scaling: a preprocessing step in machine learning that involves transforming the input features to a common scale, typically to improve the performance of machine learning algorithms.
It is important to keep features on a similar scale,
ex ) x1 is range 0<x1<2000, x2 is range 0<x2<5;
x1 is divided by 2000, x2 by 5 then both features are on the scale 0<x1/400,x2<1.
This results in a faster conversion process.
** Do not normalize x0 = 1.
** There is no need to do the feature normalization process with the normal equation.
'ML' 카테고리의 다른 글
Extending Linear Regression for Binary Classification (0) | 2023.04.23 |
---|---|
Learning Rate (0) | 2023.04.23 |
Polynomial Regression (0) | 2023.04.23 |
Gradient Descent vs. Normal Equation (0) | 2023.04.23 |
Learning Modes in ML (0) | 2023.04.22 |